If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=28^2
We move all terms to the left:
X^2+X^2-(28^2)=0
We add all the numbers together, and all the variables
2X^2-784=0
a = 2; b = 0; c = -784;
Δ = b2-4ac
Δ = 02-4·2·(-784)
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56\sqrt{2}}{2*2}=\frac{0-56\sqrt{2}}{4} =-\frac{56\sqrt{2}}{4} =-14\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56\sqrt{2}}{2*2}=\frac{0+56\sqrt{2}}{4} =\frac{56\sqrt{2}}{4} =14\sqrt{2} $
| a=2(3.14)(5)10 | | (100000/x)*1000=0 | | 8x/11=20 | | 5w-15w=30 | | 203=82-y | | .5(2h-10)=-(3h-7) | | -21+-3r=-57 | | 7x(10+5)=(7+10)+(7x5) | | 6x-6=7x+2. | | 5(d-7=7(2d-5 | | (3^27^x)=(27^3^x) | | (3)^(27)^(x)=(27)^(3)^(x) | | 2/r+11=20 | | 84=6(t-83) | | x+30.00=x+200+7 | | 4(h+1.5=-6 | | (3c+8)=3(4c+10 | | 8(x=7)=-24 | | 2(5z-3)-3(5z-2)=8/15 | | 3/5(x+7)=x=50 | | 3(4x-9)=(2x-5) | | 0.3x=10000 | | 1)x+7=-9 | | 109.3=3.14r2 | | 10v-21=62 | | 4(8+5v^2)=352 | | 6=-4/9x+14 | | 3x^2-16x-44=0 | | 10+x+1=35x | | (2)x+3=509 | | x+11=0x | | X/25=20/x |